Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(1): 207-226, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34931241

RESUMO

CTCF is crucial to the organization of mammalian genomes into loop structures. According to recent studies, the transcription apparatus is compartmentalized and concentrated at super-enhancers to form phase-separated condensates and drive the expression of cell-identity genes. However, it remains unclear whether and how transcriptional condensates are coupled to higher-order chromatin organization. Here, we show that CTCF is essential for RNA polymerase II (Pol II)-mediated chromatin interactions, which occur as hyperconnected spatial clusters at super-enhancers. We also demonstrate that CTCF clustering, unlike Pol II clustering, is independent of liquid-liquid phase-separation and resistant to perturbation of transcription. Interestingly, clusters of Pol II, BRD4, and MED1 were found to dissolve upon CTCF depletion, but were reinstated upon restoration of CTCF, suggesting a potent instructive function for CTCF in the formation of transcriptional condensates. Overall, we provide evidence suggesting that CTCF-mediated chromatin looping acts as an architectural prerequisite for the assembly of phase-separated transcriptional condensates.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Células HCT116 , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Commun ; 10(1): 5294, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757945

RESUMO

A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL-EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL-EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH-GATC incisions.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Proteínas MutL/fisiologia , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Fluorescência , Proteínas MutL/metabolismo , Imagem Individual de Molécula
3.
BMB Rep ; 52(10): 589-594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401983

RESUMO

Single-molecule techniques have been used successfully to visualize real-time enzymatic activities, revealing transient complex properties and heterogeneity of various biological events. Especially, conventional force spectroscopy including optical tweezers and magnetic tweezers has been widely used to monitor change in DNA length by enzymes with high spatiotemporal resolutions of ∼nanometers and ∼milliseconds. However, DNA metabolism results from coordination of a number of components during the processes, requiring efficient monitoring of a complex of proteins catalyzing DNA substrates. In this min-review, we will introduce a simple and multiplexed single-molecule assay to detect DNA substrates catalyzed by enzymes with high-throughput data collection. We conclude with a perspective of possible directions that enhance capability of the assay to reveal complex biological events with higher resolution. [BMB Reports 2019; 52(10): 589-594].


Assuntos
DNA/metabolismo , Imagem Individual de Molécula/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Ensaios de Triagem em Larga Escala , Pinças Ópticas , Análise Espectral
4.
Cell Chem Biol ; 25(1): 57-66.e4, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29104063

RESUMO

The αɛθ core of Escherichia coli DNA polymerase III (Pol III) associates with the ß2 sliding clamp to processively synthesize DNA and remove misincorporated nucleotides. The α subunit is the polymerase while ɛ is the 3' to 5' proofreading exonuclease. In contrast to the polymerase activity of Pol III, dynamic features of proofreading are poorly understood. We used single-molecule assays to determine the excision rate and processivity of the ß2-associated Pol III core, and observed that both properties are enhanced by mutational strengthening of the interaction between ɛ and ß2. Thus, the ɛ-ß2 contact is maintained in both the synthesis and proofreading modes. Remarkably, single-molecule real-time fluorescence imaging revealed the dynamics of transfer of primer-template DNA between the polymerase and proofreading sites, showing that it does not involve breaking of the physical interaction between ɛ and ß2.


Assuntos
DNA Polimerase III/metabolismo , Escherichia coli/enzimologia , Polimerização
5.
Proc Natl Acad Sci U S A ; 113(12): 3281-6, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951673

RESUMO

Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...